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Initial-boundary-value problems for thgdrostatic primitive equationsf meteo-
rology and oceanography are ill-posed if the boundaries are open and fixed in space
(Oliger and Sundstrn, 1978). It is shown here with theory and computation that
the same problems are well-posed if the open boundariesoaneving that is, if
they move with the fluid particles. Comoving or Lagrangian coordinates are then
particularly convenient. These findings will expedite the variational assimilation of
Lagrangian data. © 1999 Academic Press
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1. INTRODUCTION

Open boundary conditions for geophysical fluid dynamics in Eulerian domains lead
most inevitably to ill-posed mixed initial-boundary-value problems [1]. By “geophysica
we mean the so-calleldydrostatic primitive equationR]. These make only minor geo-
metrical approximations to the laws of conservation of horizontal momentum, but asst
that the vertical pressure gradient is in exact hydrostatic balance with the buoyancy f
per unit volume. The ill-posedness arises whenever the particle speeds lie within the r
of the phase speeds of the hydrostatic internal gravity waves: the flow is then subcri
with respect to the graver, faster modes and supercritical with respect to the higher, sl
modes. Thus boundary conditions that are not applied mode-by-mode must either ovi
termine some modes or underdetermine the others. In most numerical models, the bou
conditions are applied pointwise in the vertical, and so ill-posedness is manifest [3—6].
difficulty arises both in “level” models for which the vertical coordinate is depth and alsc
“layer” models for which the “vertical” coordinate is a thermodynamic state variable st
as density: see Section 9.3 of [7].

The difficulty is removed by a Galilean transformation to the reference frame of
fluid particles. Then information about the flow divergence propagates at the gravity w
speed, while information about the vorticity does not radiate as the latter is conserve
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fluid particles. All modes are effectively subcritical, so the number of boundary conditic
required to determine the inward-propagating signals is the same for all modes. The
plication is that if the boundary moves with the fluid particles, aramoving then there
is no difficulty in choosing the right number of boundary conditions in order to obte
a well-posed mixed initial-boundary-value problem. The effectiveness of these bount
conditions agsadiationconditions is a separate issue. It is emphasized that as all modes
to be subjected to the same number and type of boundary conditions, these conditions
be applied pointwise in the vertical. That is, no modal expansion is necessary. Howeve
comoving reference frame is in general depth dependent and thus will lead to distortic
initially rectilinear domains.

The structure of this paper is as follows. The difficulties with boundary conditions
Eulerian or fixed open boundaries are reviewed in Section 2, using the classical er
arguments [1]. It suffices to use just the shallow-water equations in this analysis. The ¢
energy arguments applied to comoving boundaries indicate no difficulties. The Lagran
form of the equations is reviewed in Section 3, along with the Weber vorticity integral. T
equations are linearized, and manipulated to reveal the linearized dynamics of the ¢
gent motion and the rotational motion. This permits ready identification of open bounc
conditions that yield well-posed problems. Radiation conditions are mentioned briefl
Section 4. Computational evidence in support of the linearized analysis is presente
Section 5, along with tests of a simple radiation condition. Implications for modeling &
data assimilation are discussed in Section 6.

2. ENERGY ARGUMENTS

In plane Eulerian coordinates= (x, y), the shallow-water equations are

au

at+u-Vu+fT<><u=—th+F, (2.1)
h
aa—t + V- (hu)y =0, 2.2)

wheret is time,u = u(x, t) is the depth-independent plane velocity filds a unit vector
normal to the planeh = h(x, t) is the water depth over a flat bottogijs the gravitational
acceleration, andF = F(x, t) is body force per unit mass. The Coriolis parameteis
assumed to be a linear functionytf = f (y) = fo + Sy—thus (2.1) represents dynamics
on thes-plane [8]. Equations (2.1) and (2.2) are assumed to hold in some simply connec
bounded plane domaiP with piecewise smooth boundaf§; see Fig. 1. Suitable initial
conditions for (2.1) and (2.2) are

ux, 0) = u, (x), h(x,0) = h;(x). (2.3)

Letu®, h® andu®, h® be two solutions for the same forcifigand initial valuesu; , h,
and letU=u® —u®@, H=h® —h®@ pe the difference fields. Oliger and Sundstr[1]
have shown that

d
a(h<1>K +P)+ V. [uP(hPK + P) + gh®HU]
=gHU-Vh® —gHU .- Vh® — gH?’V . u®
+PV-u® —h®u.U-wviu?, (2.4)
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"

FIG. 1. A comoving domainD with boundaryB3. Vorticity is conserved along particle paths; divergence

radiates toward and away from particle paths via gravity waves.

where

1 1
K=-U-U P=-gH?
2° 29

(2.5)

are respectively the kinetic and potential energies of the difference fieltks It follows

from (2.4) that
dE + A<BE
dt -

where
E=E® = [[ (MWK +P)x
D

A=Al = /{u<1> -A(hPK + P) + ghPHU - A} ds
B

11 . e
— 0) ) 0)
B—<2>TX§X{IV u®l. (g/h®)F|vh©]}

andf is the outward unit normal off. Integrating (2.6) yields
t
E(t) < E(0) —/eB“*”A(r)dr.
0

Note that the inverse time scédteis independent of the time

(2.6)

2.7)

(2.8)

(2.9)

(2.10)

Now E(0) =0, since the two solutions satisfy the same initial condition. We next ver
that E(t) > 0, by showing thah® > 0. A formal solution forh®™ may be obtained by
integrating (2.2) along a particle path. Détx,t |r) be the position at time of a fluid
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particle that passes througtat timet [9]. Then

aX

= = UX,r) (2.12)
and

XX, t|t)=x. (2.12)

Then the formal solution of (2.2) is

t
h(x,t) = hy (X(x, t | O))exp{—/S(x,t | r)dr}, (2.13)

0

where
S t|r)=(V-uXx, t|r),r) (2.14)

is the flow divergence at the particle(t, r). Soifh; > 0 and if§ is integrable with respect
tor, thenh(x, t) > 0. HenceE(t) > 0.

Returning to (2.10), it is now clear that any boundary condition which ensiire®
also ensures thdt (t) =0, that is, the mixed-initial-boundary value problem has a uniqt
solution.

Theintegrandin (2.8) is a8 3 quadratic form ovefU, H). Its eigenvalues and eigenvec-
tors determine the appropriate number and typ@eérboundary conditions for uniqueness
of solutions. There are four cases.

(i) Subcritical outflow [0< u® - A < (gh®)Y/2]:
one boundary condition: U.n= (g/h(l))l/zH. (2.15a)
(i) Supercritical outflow [0< (g/h®)/2 <u® . A]:
no boundary conditions. (2.15b)
(i) Subcritical inflow [-(g/h®)Y2 <u® . A < 0]:
two boundary conditions: U-f = —(g/h(1>)1/2H, U-8=0; (2.15c)

wheresis the unit tangent oif.
(iv) Supercritical inflow p® - A < —(gh®)/2]:

three boundary conditions: U-A=U-5=H =0. (2.15d)

The above conditions are expressed in terms of the difference figlbls As applied to
(2.1), (2.2), and (2.3), case (i), for example, would be

0<u-A<@h¥y: u-A=(g/h*h+R, (2.16)

whereR = R(s, t) is some boundary forcing.
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Notes. (i) The initial condition (2.3) and boundary conditions (2.15) are linear. Tt
dynamics (2.1), (2.2) are nonlinear.

(ii) The above uniqueness proof is readily modified to show also that the soluti
should it exist, depends continuously upon the initial values, body forcing, and bounc
forcing. It is not possible to prove existence of a smooth solution for an arbitrarily lo
time interval, given even smooth initial values, etc., owing to the tendency to form bore
hydraulic jumps. That s, a complete proof of well-posedness is not possible, so we shal
“well-posedness” in the restricted sense of uniqueness (and continuous dependence
data).

(iii) Rotation does not explicitly influence the energy budget (2.4), nor does
influence the choices of open boundary conditions in (2.15).
The assumption of an Eulerian, or spatially and temporally fixed open bouiitjasy
essential to the derivation of the energy inequality (2.6). Now suppoiseLagrangian,
consisting of a set of fluid particles of fixed identity. That is, supd®sedefined by

0(x, 1) = 6o (2.17)

for some smooth functiof and some constafg, whered satisfies

30
o TUVe=0 (2.18)

on B. It may be shown that, for such a comoving boundényust be of the form
0(X, 1) = 6, (X(X, t | 0)), (2.19)
where
0, (X) = 6(x, 0). (2.20)

Integrating (2.4) over the comoving domdminterior to B yields

dE
g HC=BE, (2.21)

whereE andB are defined as before—see (2.7), (2.9)—while

C=C@t) = /gh(l)HU -Ads. (2.22)
B

The fluid works on the pressure field at the boundary, but there is no advective flu:
mechanical energy across the boundary: compare (2.22) with (2.8). Integrating (2.21) y

t
E(t) = E(0) —/eB“‘”C(r)dr. (2.23)
0

Uniqueness follows from angneboundary condition that ensur€s> 0, such as

0 H=0, (2.24a)
(ii) U-A=0, (2.24b)
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or
(iii) U-f=k(g/h®)"?H, (2.24c)

wherek > 0. The scale factor is included in (2.24c) for dimensional homogeneity. T
criticality of the flow at the boundary is not an issue. Indeed, in the comoving refere
frame the effective local Froude number is identically zero. Information can only cross
comoving boundary by gravity-wave propagation.

What the preceding analysis does not make clear is the number of boundary condi
needed to specify the comoving bound&yMust both components af be provided on
B? Specifying the boundary functidgi(x, t) determines the normal component i, via
the comoving condition (2.18). Does that suffice? Is it necessary to specyr h as
well? Is it even permissible to specifyx, t)?

3. LAGRANGIAN COORDINATES

A linearized analysis of the Lagrangian form of the equations of motion reveals
correct number of open boundary conditions for the shallow-water equations.

Let a=(a, b) be the initial Cartesian coordinates of a fluid particle, andXet
(X,Y)=X(a, t) be the Cartesian coordinates of the particle tinze0. In terms of the
more general notation used in the previous sectaa, t) = X(a, 0| t). The conservation
of momentum (2.1) is expressed as

32X 1[9haY 8haY
— =gl = - —— 3.1
0t2 J {aa ob abaa} (3.1)
%Y 1[9dX3h 3Xah
=g e 2
t2 J {8a ab  9b aa} (3.2)

whereJd is the Jacobian

AX,Y) aXay axay
J=—"—" ‘"= """ - —— . 3.3
a(a, b) da db 09b da (3:3)

The partial derivatives with respect to time refer to fixed value@pb). Rotation and the
body forceF have been neglected as they do not affect our conclusions.
Conservation of volume is expressed as

a(hJ)

=0 (3.4)

Certainly we must specify initial conditions fot, U = at , andh:

X(@,0) = a, (3.5)
aX
U@ 0) = E(a, 0) = U (a), (3.6)
h(a, 0) = h,(a). (3.7)
Rearranging (3.4) as
oh hod (3.8)

- It
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differentiating with respect tb, using (3.1)—(3.3), and retaining only leading order term
yields

9%h _ gh X 2+ Y \?

az - J2 ab b

aX\? [aY\?|a%h

on i B 3.9
<8a> +(8a>18b2}+ (3.9)
Assume thab X/da, etc., are given. Then (3.9) is a linear equationtfoExamining the
discriminant of the second order operator on the right-hand side reveals that the €
tion is hyperbolic, unless the Jacobidrvanishes. This is the fundamental pathology fo

Lagrangian coordinates, and so need not be dwelled upon here. A suitable boundary
dition for (3.9) is

3°h ) aX X N aY aY\ a2h
0a? da ob  9a ab / 9adb

+

(Dirichlet) h=0, (3.10a)
(Neumann) n-Vh=0, (3.10b)

or
(Robin) «h+A-Vh=0 (3.10c)

for « > 0. The surface heiglit having been determined, the particle displacemext®’)
may be found. First, we need the two-dimensional form of the Weber vorticity-conserva
law [10], which may be derived from (3.1) and (3.2):

932X aX 32X aX  92Y aY 92y aY
— =4 ____ | =0 (3.11)
ot |otda ob  9tob sa  dtda db  9tab da

Next, letX, h be time-dependent solutions of (3.1)—(3.7), anXlgh be nearby solutions

X=X+& Y=Y+n h=h+y, (3.12)
where
€l =1 ml <X, Ixl<h (3.13)

The linearized form of (3.3) is

j = B +Cn, (3.14)
where
Y & aY @ X 99X 9
B=—— — — — =" = 1
dbda daab’ C da db  db da (3.15)

After one integration in time, linearization of (3.4) and (3.11) yields

jh+Jx =0, (3.16)
[ on 9t oaB  aC
2B _c% 2, Tl 2. 3.17
atBat " Cat T w "t at (3.17)
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Combining (3.14) and (3.16),
Bt + Cnp=—Jh 'y = (known) (3.18)
Integrating (3.17) in time and rearranging yields
%[Bn —C¢&] - Z%n + 2%5 = (initial values) (3.19)
Stepping (3.19) forward in time yields
Bn — C& = (known) (3.20)
Decoupling (3.18) and (3.20) yields, to leading order,
(B? + C?) (&, ) = (known, known) (3.21)

The elliptic equation (3.21) for, sa§requires only a Dirichlet, Neumann, or Robin bound
ary condition as in (3.10). Thef would be determined throughofft and the boundary
values of both the normaindtangential derivatives of could be inferred from (3.18) and
(3.20). However these would be compatible boundary conditions for the elliptic probl
(3.21) forn, and soy would be well-determined throughoft

In summary, suitable linear open boundary conditions for the nonlinear shallow w;
equations are

(i) specified surface height and (i) specified “normal” particle displacemett.
(3.22)

In particular, the comoving boundary is then determined. It may be more convenient, w
expressing the comoving domain in Eulerian coordinates, to sphcégd the normal
velocity:

X

U-A=—
at

A (3.23)

4. RADIATION BOUNDARY CONDITIONS

(a) Eulerian Coordinates, Fixed Boundary

The integralA defined by (2.8) is the rate of advection of total mechanical energy outw:
across the boundan, plus the rate of work by the fluid in the interior &f against the
pressure aB8. Thus A encapsulates the interaction between the fluithiand the outside
world. If the chosen boundary conditions ensure thas nonnegative, then regardless o
their dynamical appropriateness, such conditions also ensure that the mathematical n
initial-boundary-value problem withi® is well-posed. The choices listed as (i)—(iv) in
(2.15) do ensuré\ > 0, but they are not the only choices. For compactness, let us introdi
a dimensionally homogeneous three-vector field

Ui, t)
WX, t) = ) . (4.1)
(g/h(l)) ZH (X, t)
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Then (2.8) becomes

A= [ Qds (4.2)
/

where the integran@ is a quadratic form:
Q) = W(s) " M(S)W(s). (4.3)

The matrixM in (4.3) has dimension 8 3 and is symmetric. Only the boundary coordinat
sis displayed in (4.3). Diagonalizindl as

M=2ZLZ", (4.4)
whereZ is orthonormal andl = diag(A1, A2, A3), leads to

Q=S5"LS (4.5)
where

S=2'w

is the vector of projections of the three-vectWr upon the eigenvectors ®. In detalil,
(4.5)is

3
Q=) mS. (4.6)
n=1

Consider case (iii): subcritical inflow. Then > 0> A, > A3. Two boundary conditions are
needed, such & = S =0, which unravel as (2.15c). More generally,

$=0 (4.7a)
S =k$S (4.7b)

suffice, provided
k2 > _A.Z/)\,l. (48)

Otherwisek may be any real function of the boundary coordirate
Suppose now thds is the entirex-axis (thuss=x), and ignore the dependenceMf
and hencé upons. Then

A= /STLde=2n/§*Léd/c, (4.9)

whereS(x) is the Fourier transform d(x),

S(k) = / e**S(x) dx, (4.10)

—00
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and$* is the conjugate transpose®fit may now be seen that suitable boundary conditior
are

S =0, (4.11a)
S, = kS, (4.11b)

providedk = k(x) is real, and
K> —ao/n1. (4.12)

Otherwisek is any function ofc. The wavenumber-local condition (4.11b) is equivalent t
the spatially nonlocal condition

Si(X) = (2n) / k(xX)S(x — x)dx. (4.13)

The advantage of such a condition is that it may be possible to ctkamseh that (4.13) is
identically satisfied by motions initialized or forced witiih Then (4.13) would in no way
inhibit signals from escapingp, but would still specify any incoming signals. That would
be an ideal condition for an open or unphysical boundary [11]. Implementation of nonlc
conditions is usually impractical, and local approximations have been devised [12].

(b) Eulerian Coordinates, Comoving Domain

It is immediately evident from (2.24c) that, provided boundary variationk‘Bfare
ignored, a nonlocal condition of the form

U(x) = (g/h(l))l/2 / K(X)YH(x — x) dx, (4.14)

for any k =k(x) > 0, ensures uniqueness. Operator-splitting formskfdo exist. These
forms make (4.14) an identity for signals from witlin

(c) Lagrangian Coordinates, Comoving Domain

The simplest approach is to derive the following energy budget from the unpertur
equations (3.1)—(3.4)

%%//{h(x3+\(3)+%gh2}3 dadb=- [ F-fdp. (4.15)
D B

wherepis path length along in the labelling(a, b)-space, wittD on the leftagpincreases,
while F is the directed rate of working:

1
F= Egh2(xt\(t —Yi Xp, Yi Xa — Xi Ya). (4.16)
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If B is the locus of points

a=A(p) = (A(p), B(p)), (4.17)
then the unit normal tés is
A= (B'(p), —A(P)IA' (P, (4.18)
and
/F-ﬁdp:/%ghzxt-ﬁdp. (4.19)
B B

There will be dossof energy, fronD, acrosd3 so long as the integrand in (4.19)issitive
see (4.15). As an example of a suitably “lossy” boundary condition, consider

X - i = k(g/h)¥?h (4.20)

for anyk > 0. Recall thah does not change its sign over time, provided the flow divergen
is integrable along particle paths. The perturbation form of (4.20) is, in the notation (3.:

x =k X (g/h) V%, - . (4.21)

The condition (4.21) may be uncoupled after much algebra, but direct numerical im,
mentation of (4.21) (or (4.20)) is straightforward wh{e(or X) is being time-stepped.

5. DEMONSTRATIONS

The theoretical arguments in Section 3 leading to the boundary conditions (3.22)
supported by a simple numerical demonstration. It involves an outer and an inner don
The outer is a periodic channel, and the inner is a half-wavelength section of the channe
Fig. 2. Notice that the coordinates are Lagrangiamdb (the initial Cartesian coordinates
of particles). The channel occupies< < L /2, whereL is the fundamental wavelength
in thea-direction.

The channel walls are rigid:

Y@ 0,t)=0;, Y(L/2t)=L/2 (5.1)
b

T(O,L/Z) |

(0;0) (L/I4,0) GL/A40) (L.,O) ‘a

FIG. 2. Periodic channel; wavelengthin the long-channel Lagrangian Cartesian coordimatégid bound-
aries atb =0, L/2; inner sectiorL /4 <a <3L/4.
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All fields are periodic ira:

h(L,b,t) = h(0, b, 1), (5.2a)
X(L,b,t) = X(0,b, t) + L (5.2b)
Y(L,b,t) = Y(O, b, t). (5.2¢)

Any choices of initial conditions
X@0=a X(a0=U(@, h@0=nh(@ (5.3)

that are compatible with (5.1) and (5.2) yield well-posed boundary-initial-value proble
in the outer domain. For example, consider the following initial fields [13] in the absel
of forcing

u@b)y=Ug—-U; sin(il_a) cos(z%b) (5.4a)

v (a, b) = 2U, cos(@> sin(zib) (5.4b)
L L
hi(a. b) — c? LfU, sin 4ra sin 2rb U2 cos 8ra
@ >—g+(2ng) ! (L> ! <L>+(49>{ <L>
4b fUO L
+4cos<T>} — (T) (b— E)’ (5.4c)

wherec is a phase speed. These fields are initially “balanced” in the sense thalat
= =0 (5.5)

It follows that the Eulerian flow divergenc@j - u vanishes initially, as does its Eulerian
local rate of change%(Vx - u). The initial values (5.4) lead to smooth fields after an ac
vective time scaleé =T =L /(2Up): see, for example, the long-channel veloaity X;

in Fig. 3. In brief, the numerics are second-order centered differences in space or
C-grid [14], forward—backward differencing in time, no filtering, and simple first-ord
extrapolatory computational boundary conditions as needed. None are needed for th
riodic channel. Parameter values are given in Table 1. Computed valugsrofandh at

a=1L/4,3L/4,forO<b<L/2,andforO<t < T were used as boundary data for “nested

TABLE 1
Parameter Value
f 10*4st
L 2x10°m
Uo 0.5ms?
U, 0.1ms?
c 2 m s* (subcritical flow)
0.2 m s (supercritical flow)
At 10s

Aa (=Ab) 2x 1P m
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7500

0050

g 5000

2500

b
L)
)
] \ ]

0 2500 5000 7500 10000
m

0

FIG. 3. The outer solution for the long-channel Lagrangian velogity X; att =T = L (2Uo) 7%, in the inner
domainL/4<a<3L/4,0<b<L/2.

integrations in the channel sectidry4 <a < 3L /4. Eight integrations will now be de-
scribed, with the following variations:

(i) either subcriticalUg < ¢), or supercriticalUg > ¢) mean flow;

(ii) either two dynamical boundary conditions (DBCs) ¥andh, and a computational
boundary condition (CBC) fo¥, at botha=L /4 anda=23L /4, or three DBCs at both
a=L/4anda=3L/4;

(iii) either “exact” numerical boundary data from the integration in the outer dome
provided ata = L /4 anda = 3L /4, or “corrupted” data. The data were corrupted as

X(@, b, ty), 1<k<100

X(a, b, tk) == { 2
rkX(a, b, t), 101 < k < 1000

(5.6)
wheret, = kAt, T =tjo00 andr =0.99998. Note that °°°=0.98 so the corruption is at
most 2%.

For brevity, results from only some combinations will be displayed.

(a: subcritical flow, 2 DBCs, 1 CBC, exact data) The outer solution is recovered:
Fig. 4.

(b: subcritical flow, 3 DBCs, exact data) The outer solution is recovered: see Fig.

(c: subcritical flow, 2 DBCs, 1 CBC, corrupted data) The outer solution is notrecover
but the result is a smooth field: see Fig. 6.

(d: subcritical flow, 3 DBCs, corrupted data) The resultis not a smooth field: see Fig
Integrating (d) beyontl=T leads quickly to complete breakdown of the solution, as do
integration fromt =0tot =T forr =0.99997.

(e: supercritical flow, 2 DBCs, 1 CBC, corrupted data) The outer solution is not rec
ered, but the result is a smooth field: see Fig. 8.
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10000

7500

0050

g 5000

2500

b

53

5
1 \

0 2500 5000
m

FIG. 4. Experiment (a): subcritical flow, two dynamical boundary conditions (DBCs), one computatiol
boundary condition (CBC), exact boundary data from the outer solution. The outer solution is recovered.

(f: supercritical flow, 3 DBCs, corrupted data) The result is not a smooth field: «
Fig. 9. Again integrations for longer time or greater corruption lead to solution breakdo

In summary, these simple experiments support the theoretical arguments of Section
h andX - A may be specified on comoving boundaries, but not the tangential componei

10000

0050—

7500

0050

g 5000

2500

0690

o

oy

S
| \

0 2500 5000 7500 10000
m

FIG. 5. Experiment (b): subcritical flow, three DBCs, exact data. The outer solution is recovered.
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10000

005°0

7500 r

g 5000

2500

—0.500
= 0.550

le———— 0050

0 2500 5000 7500 10000
m

FIG.6. Experiment (c): subcritical flow, two DBCs, one CBC, corrupted data. The inner solution differs frc
the outer, but is smooth.

X in addition. It is also clear that, of course, were the boundary data obtained from pel
observations of a real shallow-water flow (and filtered so as to be exactly consistent w
numerical model) or obtained from another consistent numerical computation, then the:
orindeed even any number of dynamical boundary conditions could be prescribed. How

10000 ' - T ~w?g

50

0

7500

0.50
L

s

£ 5000 |

2500 | //\J
ol . . . .

0 2500 5000 7500 10000
m

—050

FIG. 7. Experiment (d): subcritical flow, three DBCs, corrupted data. The inner solution is not smooth.
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10000

/Y

0.60
[+

7500

0.50

g 5000

2500 %, ]
LQASQ

oli|__ 1

0 2500 5000 7500 10000
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FIG. 8. Experiment (e): supercritical flow, two DBCs, one CBC, corrupted data. The inner solution diff
from the outer (not shown), but is smooth.

the practical situation is that observations have significant errors and are inconsist
filtered, while numerical data derive from coarser outer numerical approximations.

It remains to demonstrate the efficiency of radiation conditions at comoving boundal
Let h®D, XD pe the solution of problem (a) above, that is, the inner solution subject to
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FIG. 9. Experiment (f): supercritical flow, three DBCs, corrupted data. The inner solution is not smooth
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initial values (5.4) and to boundary conditionstoand X, the boundary valudsgc, Xgc
being uncorrupted values of the outer solution. Recall hi¥at X agree with the outer
solution. Leth®, X@ be the inner solution subject to the initial values (5.4) excepting th
h, is modified:

h{?(a, b) = h, (a, b)
x {1 +e sinr(al__/lz'/df)} exp[-((@a—L/2%+ (b—L/4?(L/2)7] }
(5.7)

Thus hfz) is modified by a bell-shaped “bump” of amplitudeat (L/2, L /4), which is
tapered to vanish at= L /4, 3L /4. Alsoh®, X are subject to the linear, inhomogeneou:
radiation condition

Xi = Xige FOC ' (h—hge)  ata= { -/ (5.8)
3L/4
plus the kinematic condition
X = Xgc (5.9)

ata=L/4, 3L/4. That (5.8) and (5.9) together seem equivalent to the nonradiational ¢
ditions (3.21) is resolved by noting that the flow perturbations

E=X?2 XD x=h@_p® (5.10)
satisfy
& = +gc iy (5.11)

ataboundary that has the total displacement (5.9). Long-channel sections of the perturt
x onthe centerline= L /4 are plottedin Fig. 10fdr=0, T/2, T, 2T. As expected, there is
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FIG. 10. Long-channel sections of height differenge=h® —h® at 0, T/2, T, 2T; b= L /4, subcritical
flow, initial bump amplitudes = 0.1. The disturbance smoothly exits the inner domain. Solid lire0; dotted
line:t =T/2; dashed linet = T; dot-dashed linet =2T.
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no evidence of ill-posedness. The disturbance amplitude decays in time. Ti&tish®
ast — oo. The bump in the free surface has exited the inner domain, and the outer solt
is recovered asymptotically.

6. SUMMARY

Ithas been argued theoretically, and by numerical demonstration, that the initial-bounc
value problem for the primitive equations is well-posed in open comoving domains. In
Lagrangian reference frame, all modes are effectively subcritical at the boundary (the
cal Froude number vanishes identically) and so each mode requires the same num|
boundary conditions: one, such as surface elevation, to determine the incoming gre
wave radiation, with another, such as normal velocity, to determine the subsequent mi
of the boundary.

The horizontal Lagrangian reference frame depends upon depth, which dependence!
general lead to distortion of initially rectilinear three-dimensional open domains. Howe
this is a technical issue, as opposed to the fundamental issue of ill-posedness, an
received little attention owing to a lack of motivation. The demonstration here of we
posedness in comoving open domains provides that motivation.

The comoving domain is conveniently expressed in Lagrangian coordinates. Sup
further that data, such as surface elevation or isopycnal degthve been collected by
freely drifting or Lagrangian buoys. ¥= X(a, t) is the buoy trajectory, ande = hg(x, t)
is the Eulerian field of elevation, then the data are of the form

d(t) = he(X(@a, 1), 1), (6.1)

wherea is the initial position of the buoy. Now (6.1) is a nonlinear measurement, whi
would greatly complicate least-squares variational data assimilation. The tangent linez
tion of (6.1) is readily derived, but its impact on any iterative search algorithm may well
complex. If, on the other hanty =hy (a, t) is the Lagrangian field of elevation, then the
data are of the form

dt) = h,(a t), (6.2)

which is a linear measurement, and so ideally suited to least-squares variational as
lation. (Data from moored or Eulerian buoys would correspond, of course, to nonlin
measurements in Lagrangian coordinates.)

Comoving domains and Lagrangian coordinates evidently offer significant advantage
regional modeling. Finally it may be noted that, as the cost of fixed moorings are becon
prohibitive, surface drifters and subsurface floats are increasingly the observing platfc
of choice.
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