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Initial-boundary-value problems for thehydrostatic primitive equationsof meteo-
rology and oceanography are ill-posed if the boundaries are open and fixed in space
(Oliger and Sundstr¨om, 1978). It is shown here with theory and computation that
the same problems are well-posed if the open boundaries arecomoving, that is, if
they move with the fluid particles. Comoving or Lagrangian coordinates are then
particularly convenient. These findings will expedite the variational assimilation of
Lagrangian data. c© 1999 Academic Press
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1. INTRODUCTION

Open boundary conditions for geophysical fluid dynamics in Eulerian domains lead al-
most inevitably to ill-posed mixed initial-boundary-value problems [1]. By “geophysical”
we mean the so-calledhydrostatic primitive equations[2]. These make only minor geo-
metrical approximations to the laws of conservation of horizontal momentum, but assume
that the vertical pressure gradient is in exact hydrostatic balance with the buoyancy force
per unit volume. The ill-posedness arises whenever the particle speeds lie within the range
of the phase speeds of the hydrostatic internal gravity waves: the flow is then subcritical
with respect to the graver, faster modes and supercritical with respect to the higher, slower
modes. Thus boundary conditions that are not applied mode-by-mode must either overde-
termine some modes or underdetermine the others. In most numerical models, the boundary
conditions are applied pointwise in the vertical, and so ill-posedness is manifest [3–6]. The
difficulty arises both in “level” models for which the vertical coordinate is depth and also in
“layer” models for which the “vertical” coordinate is a thermodynamic state variable such
as density: see Section 9.3 of [7].

The difficulty is removed by a Galilean transformation to the reference frame of the
fluid particles. Then information about the flow divergence propagates at the gravity wave
speed, while information about the vorticity does not radiate as the latter is conserved on
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fluid particles. All modes are effectively subcritical, so the number of boundary conditions
required to determine the inward-propagating signals is the same for all modes. The im-
plication is that if the boundary moves with the fluid particles, or iscomoving, then there
is no difficulty in choosing the right number of boundary conditions in order to obtain
a well-posed mixed initial-boundary-value problem. The effectiveness of these boundary
conditions asradiationconditions is a separate issue. It is emphasized that as all modes are
to be subjected to the same number and type of boundary conditions, these conditions may
be applied pointwise in the vertical. That is, no modal expansion is necessary. However, the
comoving reference frame is in general depth dependent and thus will lead to distortion of
initially rectilinear domains.

The structure of this paper is as follows. The difficulties with boundary conditions at
Eulerian or fixed open boundaries are reviewed in Section 2, using the classical energy
arguments [1]. It suffices to use just the shallow-water equations in this analysis. The same
energy arguments applied to comoving boundaries indicate no difficulties. The Lagrangian
form of the equations is reviewed in Section 3, along with the Weber vorticity integral. The
equations are linearized, and manipulated to reveal the linearized dynamics of the diver-
gent motion and the rotational motion. This permits ready identification of open boundary
conditions that yield well-posed problems. Radiation conditions are mentioned briefly in
Section 4. Computational evidence in support of the linearized analysis is presented in
Section 5, along with tests of a simple radiation condition. Implications for modeling and
data assimilation are discussed in Section 6.

2. ENERGY ARGUMENTS

In plane Eulerian coordinatesx= (x, y), the shallow-water equations are

∂u
∂t
+ u ·∇u+ f k̂ × u = −g∇h+ F, (2.1)

∂h

∂t
+∇ · (hu) = 0, (2.2)

wheret is time,u= u(x, t) is the depth-independent plane velocity field,k̂ is a unit vector
normal to the plane,h= h(x, t) is the water depth over a flat bottom,g is the gravitational
acceleration, andF=F(x, t) is body force per unit mass. The Coriolis parameterf is
assumed to be a linear function ofy— f = f (y)= f0+βy—thus (2.1) represents dynamics
on theβ-plane [8]. Equations (2.1) and (2.2) are assumed to hold in some simply connected,
bounded plane domainD with piecewise smooth boundaryB; see Fig. 1. Suitable initial
conditions for (2.1) and (2.2) are

u(x, 0) = uI (x), h(x, 0) = hI (x) . (2.3)

Let u(1), h(1) andu(2), h(2) be two solutions for the same forcingF and initial valuesuI , hI

and letU= u(1)− u(2), H = h(1)− h(2) be the difference fields. Oliger and Sundstr¨om [1]
have shown that

∂

∂t

(
h(1)K + P

)+∇ · [u(1)(h(1)K + P
)+ gh(1)HU

]
= gHU ·∇h(1) − gHU ·∇h(2) − gH2∇ · u(2)

+ P∇ · u(1) − h(1)U · (U ·∇)u(2), (2.4)
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FIG. 1. A comoving domainD with boundaryB. Vorticity is conserved along particle paths; divergence
radiates toward and away from particle paths via gravity waves.

where

K = 1

2
U · U, P = 1

2
gH2 (2.5)

are respectively the kinetic and potential energies of the difference fieldsU, H. It follows
from (2.4) that

d E

dt
+ A ≤ BE, (2.6)

where

E = E(t) ≡
∫∫
D

(
h(1)K + P

)
dx (2.7)

A = A(t) ≡
∫
B

{
u(1) · n̂(h(1)K + P

)+ gh(1)HU · n̂} ds (2.8)

B ≡
(

11

2

)
max
i,x,t

{∣∣∇ · u(i )∣∣, (g/h(i )
)1/2∣∣∇h(i )

∣∣} (2.9)

andn̂ is the outward unit normal onB. Integrating (2.6) yields

E(t) ≤ E(0)−
t∫

0

eB(t−r )A(r ) dr. (2.10)

Note that the inverse time scaleB is independent of the timer .
Now E(0)= 0, since the two solutions satisfy the same initial condition. We next verify

that E(t)≥ 0, by showing thath(1)≥ 0. A formal solution forh(1) may be obtained by
integrating (2.2) along a particle path. LetX(x, t | r ) be the position at timer of a fluid
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particle that passes throughx at timet [9]. Then

∂X
∂r
= U(X, r ) (2.11)

and

X(x, t | t) = x. (2.12)

Then the formal solution of (2.2) is

h(x, t) = hI (X(x, t | 0)) exp

−
t∫

0

δ(x, t | r ) dr

, (2.13)

where

δ(x, t | r ) = (∇ · u)(X(x, t | r ), r ) (2.14)

is the flow divergence at the particle at(X, r ). So ifhI ≥ 0 and ifδ is integrable with respect
to r , thenh(x, t)≥ 0. HenceE(t)≥ 0.

Returning to (2.10), it is now clear that any boundary condition which ensuresA≥ 0
also ensures thatE(t)≡ 0, that is, the mixed-initial-boundary value problem has a unique
solution.

The integrand in (2.8) is a 3× 3 quadratic form over(U, H). Its eigenvalues and eigenvec-
tors determine the appropriate number and type oflinearboundary conditions for uniqueness
of solutions. There are four cases.

(i) Subcritical outflow [0< u(1) · n̂<(gh(1))1/2]:

one boundary condition: U · n = (g/h(1)
)1/2

H. (2.15a)

(ii) Supercritical outflow [0<(g/h(1))1/2< u(1) · n̂]:

no boundary conditions. (2.15b)

(iii) Subcritical inflow [−(g/h(1))1/2< u(1) · n̂< 0]:

two boundary conditions: U · n̂ = −(g/h(1)
)1/2

H, U · ŝ= 0; (2.15c)

whereŝ is the unit tangent onB.
(iv) Supercritical inflow [u(1) · n̂<−(gh(1))1/2]:

three boundary conditions: U · n̂ = U · ŝ= H = 0. (2.15d)

The above conditions are expressed in terms of the difference fieldsU, H . As applied to
(2.1), (2.2), and (2.3), case (i), for example, would be

[0 < u · n̂ < (gh)1/2]; u · n̂ = (g/h)1/2h+ R, (2.16)

whereR= R(s, t) is some boundary forcing.
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Notes. (i) The initial condition (2.3) and boundary conditions (2.15) are linear. The
dynamics (2.1), (2.2) are nonlinear.

(ii) The above uniqueness proof is readily modified to show also that the solution,
should it exist, depends continuously upon the initial values, body forcing, and boundary
forcing. It is not possible to prove existence of a smooth solution for an arbitrarily long
time interval, given even smooth initial values, etc., owing to the tendency to form bores or
hydraulic jumps. That is, a complete proof of well-posedness is not possible, so we shall use
“well-posedness” in the restricted sense of uniqueness (and continuous dependence upon
data).

(iii) Rotation does not explicitly influence the energy budget (2.4), nor does it
influence the choices of open boundary conditions in (2.15).

The assumption of an Eulerian, or spatially and temporally fixed open boundaryB, is
essential to the derivation of the energy inequality (2.6). Now supposeB is Lagrangian,
consisting of a set of fluid particles of fixed identity. That is, supposeB is defined by

θ(x, t) = θ0 (2.17)

for some smooth functionθ and some constantθ0, whereθ satisfies

∂θ

∂t
+ u ·∇θ = 0 (2.18)

onB. It may be shown that, for such a comoving boundary,θ must be of the form

θ(x, t) = θI (X(x, t | 0)), (2.19)

where

θI (x) = θ(x, 0). (2.20)

Integrating (2.4) over the comoving domainD interior toB yields

d E

dt
+ C ≤ BE, (2.21)

whereE andB are defined as before—see (2.7), (2.9)—while

C = C(t) ≡
∫
B

gh(1)HU · n̂ ds. (2.22)

The fluid works on the pressure field at the boundary, but there is no advective flux of
mechanical energy across the boundary: compare (2.22) with (2.8). Integrating (2.21) yields

E(t) = E(0)−
t∫

0

eB(t−r )C(r ) dr. (2.23)

Uniqueness follows from anyoneboundary condition that ensuresC≥ 0, such as

(i) H = 0, (2.24a)

(ii) U · n̂ = 0, (2.24b)
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or

(iii) U · n̂ = k
(
g/h(1)

)1/2
H, (2.24c)

wherek≥ 0. The scale factor is included in (2.24c) for dimensional homogeneity. The
criticality of the flow at the boundary is not an issue. Indeed, in the comoving reference
frame the effective local Froude number is identically zero. Information can only cross the
comoving boundary by gravity-wave propagation.

What the preceding analysis does not make clear is the number of boundary conditions
needed to specify the comoving boundaryB. Must both components ofu be provided on
B? Specifying the boundary functionθ(x, t) determines the normal componentu · n̂, via
the comoving condition (2.18). Does that suffice? Is it necessary to specifyu · ŝ or h as
well? Is it even permissible to specifyθ(x, t)?

3. LAGRANGIAN COORDINATES

A linearized analysis of the Lagrangian form of the equations of motion reveals the
correct number of open boundary conditions for the shallow-water equations.

Let a= (a, b) be the initial Cartesian coordinates of a fluid particle, and letX=
(X,Y)=X(a, t) be the Cartesian coordinates of the particle timet ≥ 0. In terms of the
more general notation used in the previous section,X(a, t)=X(a, 0 | t). The conservation
of momentum (2.1) is expressed as

∂2X

∂t2
= −gJ−1

{
∂h

∂a

∂Y

∂b
− ∂h

∂b

∂Y

∂a

}
(3.1)

∂2Y

∂t2
= −gJ−1

{
∂X

∂a

∂h

∂b
− ∂X

∂b

∂h

∂a

}
, (3.2)

whereJ is the Jacobian

J ≡ ∂(X,Y)

∂(a, b)
≡ ∂X

∂a

∂Y

∂b
− ∂X

∂b

∂Y

∂a
. (3.3)

The partial derivatives with respect to time refer to fixed values of(a, b). Rotation and the
body forceF have been neglected as they do not affect our conclusions.

Conservation of volume is expressed as

∂(h J)

∂t
= 0. (3.4)

Certainly we must specify initial conditions forX,U≡ ∂X
∂t , andh:

X(a, 0) = a, (3.5)

U(a, 0) ≡ ∂X
∂t
(a, 0) = UI (a), (3.6)

h(a, 0) = hI (a). (3.7)

Rearranging (3.4) as

∂h

∂t
= − h

J

∂ J

∂t
, (3.8)
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differentiating with respect tot , using (3.1)–(3.3), and retaining only leading order terms
yields

∂2h

∂t2
= gh

J2

{[(
∂X

∂b

)2

+
(
∂Y

∂b

)2
]
∂2h

∂a2
− 2

(
∂X

∂a

∂X

∂b
+ ∂Y

∂a

∂Y

∂b

)
∂2h

∂a∂b

+
[(

∂X

∂a

)2

+
(
∂Y

∂a

)2
]
∂2h

∂b2

}
+ · · · (3.9)

Assume that∂X/∂a, etc., are given. Then (3.9) is a linear equation forh. Examining the
discriminant of the second order operator on the right-hand side reveals that the equa-
tion is hyperbolic, unless the JacobianJ vanishes. This is the fundamental pathology for
Lagrangian coordinates, and so need not be dwelled upon here. A suitable boundary con-
dition for (3.9) is

(Dirichlet) h = 0, (3.10a)

(Neumann) n̂ ·∇h = 0, (3.10b)

or

(Robin) αh+ n̂ ·∇h = 0 (3.10c)

for α≥ 0. The surface heighth having been determined, the particle displacements(X,Y)
may be found. First, we need the two-dimensional form of the Weber vorticity-conservation
law [10], which may be derived from (3.1) and (3.2):

∂

∂t

[
∂2X

∂t∂a

∂X

∂b
− ∂2X

∂t∂b

∂X

∂a
+ ∂2Y

∂t∂a

∂Y

∂b
− ∂2Y

∂t∂b

∂Y

∂a

]
= 0. (3.11)

Next, letX̄, h̄ be time-dependent solutions of (3.1)–(3.7), and letX, h be nearby solutions

X = X̄ + ξ, Y = Ȳ + η, h = h̄+ χ, (3.12)

where

|ξ| = |(ξ, η)| ≤ |X̄|, |χ | ≤ h̄. (3.13)

The linearized form of (3.3) is

j ≡ Bξ + Cη, (3.14)

where

B ≡ ∂Ȳ

∂b

∂

∂a
− ∂Ȳ

∂a

∂

∂b
, C ≡ ∂ X̄

∂a

∂

∂b
− ∂ X̄

∂b

∂

∂a
. (3.15)

After one integration in time, linearization of (3.4) and (3.11) yields

j h̄+ J̄χ = 0, (3.16)

∂

∂t

[
B
∂η

∂t
− C

∂ξ

∂t
− ∂B

∂t
η + ∂C

∂t
ξ

]
= 0. (3.17)
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Combining (3.14) and (3.16),

Bξ + Cη = − J̄ h̄−1
χ = (known). (3.18)

Integrating (3.17) in time and rearranging yields

∂

∂t
[Bη − Cξ ] − 2

∂B

∂t
η + 2

∂C

∂t
ξ = (initial values). (3.19)

Stepping (3.19) forward in time yields

Bη − Cξ = (known). (3.20)

Decoupling (3.18) and (3.20) yields, to leading order,

(B2+ C2)(ξ, η) = (known, known). (3.21)

The elliptic equation (3.21) for, say,ξ requires only a Dirichlet, Neumann, or Robin bound-
ary condition as in (3.10). Thenξ would be determined throughoutB, and the boundary
values of both the normalandtangential derivatives ofη could be inferred from (3.18) and
(3.20). However these would be compatible boundary conditions for the elliptic problem
(3.21) forη, and soη would be well-determined throughoutB.

In summary, suitable linear open boundary conditions for the nonlinear shallow water
equations are

(i) specified surface heighth and (ii) specified “normal” particle displacementX · n̂.
(3.22)

In particular, the comoving boundary is then determined. It may be more convenient, when
expressing the comoving domain in Eulerian coordinates, to specifyh and the normal
velocity:

U · n̂ = ∂X
∂t
· n̂. (3.23)

4. RADIATION BOUNDARY CONDITIONS

(a) Eulerian Coordinates, Fixed Boundary

The integralAdefined by (2.8) is the rate of advection of total mechanical energy outward
across the boundaryB, plus the rate of work by the fluid in the interior ofD against the
pressure atB. ThusA encapsulates the interaction between the fluid inD and the outside
world. If the chosen boundary conditions ensure thatA is nonnegative, then regardless of
their dynamical appropriateness, such conditions also ensure that the mathematical mixed,
initial-boundary-value problem withinD is well-posed. The choices listed as (i)–(iv) in
(2.15) do ensureA≥ 0, but they are not the only choices. For compactness, let us introduce
a dimensionally homogeneous three-vector field

W(x, t) =
 U(x, t)(

g
/

h(1)
) 1

2 H(x, t)

. (4.1)
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Then (2.8) becomes

A =
∫
D

Q ds, (4.2)

where the integrandQ is a quadratic form:

Q(s) =W(s)TMMM(s)W(s). (4.3)

The matrixMMM in (4.3) has dimension 3× 3 and is symmetric. Only the boundary coordinate
s is displayed in (4.3). DiagonalizingMMM as

MMM = ZZZLLLZZZT
, (4.4)

whereZZZ is orthonormal andLLL= diag(λ1, λ2, λ3), leads to

Q = STLLLS, (4.5)

where

S= ZZZTW

is the vector of projections of the three-vectorW upon the eigenvectors ofMMM. In detail,
(4.5) is

Q =
3∑

n=1

λnS2
n. (4.6)

Consider case (iii): subcritical inflow. Thenλ1> 0>λ2>λ3. Two boundary conditions are
needed, such asS2= S3= 0, which unravel as (2.15c). More generally,

S3 = 0 (4.7a)

S1 = kS2 (4.7b)

suffice, provided

k2 ≥ −λ2/λ1. (4.8)

Otherwisek may be any real function of the boundary coordinates.
Suppose now thatB is the entirex-axis (thuss= x), and ignore the dependence ofMMM

and henceLLL upons. Then

A =
∞∫
−∞

STLLLSdx = 2π

∞∫
−∞

Ŝ∗LLLŜdκ, (4.9)

whereŜ(κ) is the Fourier transform ofS(x),

Ŝ(κ) =
∞∫
−∞

ei κxS(x) dx, (4.10)
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andŜ∗ is the conjugate transpose ofŜ. It may now be seen that suitable boundary conditions
are

Ŝ3 = 0, (4.11a)

Ŝ1 = k̂Ŝ2, (4.11b)

providedk̂= k̂(κ) is real, and

k̂
2 ≥ −λ2/λ1. (4.12)

Otherwisêk is any function ofκ. The wavenumber-local condition (4.11b) is equivalent to
the spatially nonlocal condition

S1(x) = (2π)
∞∫
−∞

k(x′)S2(x − x′) dx′. (4.13)

The advantage of such a condition is that it may be possible to choosek such that (4.13) is
identically satisfied by motions initialized or forced withinD. Then (4.13) would in no way
inhibit signals from escapingD, but would still specify any incoming signals. That would
be an ideal condition for an open or unphysical boundary [11]. Implementation of nonlocal
conditions is usually impractical, and local approximations have been devised [12].

(b) Eulerian Coordinates, Comoving Domain

It is immediately evident from (2.24c) that, provided boundary variations ofh(1) are
ignored, a nonlocal condition of the form

U (x) = (g/h(1)
)1/2 ∞∫
−∞

k(x′)H(x − x′) dx′, (4.14)

for any k= k(x)>0, ensures uniqueness. Operator-splitting forms fork do exist. These
forms make (4.14) an identity for signals from withinD.

(c) Lagrangian Coordinates, Comoving Domain

The simplest approach is to derive the following energy budget from the unperturbed
equations (3.1)–(3.4)

d

dt

1

2

∫∫
D

{
h
(
X2

t + Y2
t

)+ 1

2
gh2

}
J da db= −

∫
B

F · n̂ dp, (4.15)

wherep is path length alongB in the labelling(a, b)-space, withD on the left asp increases,
while F is the directed rate of working:

F = 1

2
gh2(XtYt − Yt Xb,Yt Xa − XtYa). (4.16)
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If B is the locus of points

a= A(p) = (A(p), B(p)), (4.17)

then the unit normal toB is

n̂ = (B′(p),−A′(p))|A′(p)|−1, (4.18)

and ∫
B

F · n̂ dp=
∫
B

1

2
gh2Xt · n̂ dp. (4.19)

There will be alossof energy, fromD, acrossB so long as the integrand in (4.19) ispositive;
see (4.15). As an example of a suitably “lossy” boundary condition, consider

Xt · n̂ = k(g/h)1/2h (4.20)

for anyk≥ 0. Recall thath does not change its sign over time, provided the flow divergence
is integrable along particle paths. The perturbation form of (4.20) is, in the notation (3.12),

χ = k−1(g/h̄)−1/2ξt · n̂. (4.21)

The condition (4.21) may be uncoupled after much algebra, but direct numerical imple-
mentation of (4.21) (or (4.20)) is straightforward whileξ (or X) is being time-stepped.

5. DEMONSTRATIONS

The theoretical arguments in Section 3 leading to the boundary conditions (3.22) are
supported by a simple numerical demonstration. It involves an outer and an inner domain.
The outer is a periodic channel, and the inner is a half-wavelength section of the channel; see
Fig. 2. Notice that the coordinates are Lagrangiana andb (the initial Cartesian coordinates
of particles). The channel occupies 0< b< L/2, whereL is the fundamental wavelength
in thea-direction.

The channel walls are rigid:

Y(a, 0, t) = 0; Y(a, L/2, t) = L/2. (5.1)

FIG. 2. Periodic channel; wavelengthL in the long-channel Lagrangian Cartesian coordinatea; rigid bound-
aries atb= 0, L/2; inner sectionL/4≤a≤ 3L/4.
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All fields are periodic ina:

h(L , b, t) = h(0, b, t), (5.2a)

X(L , b, t) = X(0, b, t)+ L (5.2b)

Y(L , b, t) = Y(0, b, t). (5.2c)

Any choices of initial conditions

X(a, 0) = a, Xt (a, 0) = UI (a), h(a, 0) = hI (a) (5.3)

that are compatible with (5.1) and (5.2) yield well-posed boundary-initial-value problems
in the outer domain. For example, consider the following initial fields [13] in the absence
of forcing

uI (a, b) = U0−U1 sin

(
4πa

L

)
cos

(
2πb

L

)
(5.4a)

vI (a, b) = 2U1 cos

(
4πa

L

)
sin

(
2πb

L

)
(5.4b)

hI (a, b) = c2

g
+
(

L f U1

2πg

)
sin

(
4πa

L

)
sin

(
2πb

L

)
+
(

U2
1

4g

){
cos

(
8πa

L

)
+ 4 cos

(
4πb

L

)}
−
(

f U0

g

)(
b− L

2

)
, (5.4c)

wherec is a phase speed. These fields are initially “balanced” in the sense that att = 0,

Jt = Jtt = 0. (5.5)

It follows that the Eulerian flow divergence∇x · u vanishes initially, as does its Eulerian
local rate of change∂

∂t (∇x · u). The initial values (5.4) lead to smooth fields after an ad-
vective time scalet = T = L/(2U0): see, for example, the long-channel velocityu≡ Xt

in Fig. 3. In brief, the numerics are second-order centered differences in space on the
C-grid [14], forward–backward differencing in time, no filtering, and simple first-order
extrapolatory computational boundary conditions as needed. None are needed for the pe-
riodic channel. Parameter values are given in Table 1. Computed values ofX,Y, andh at
a= L/4, 3L/4, for 0≤ b≤ L/2, and for 0≤ t ≤ T were used as boundary data for “nested”

TABLE 1

Parameter Value

f 10−4 s−1

L 2× 104 m
U0 0.5 m s−1

U1 0.1 m s−1

c 2 m s−1 (subcritical flow)
0.2 m s−1 (supercritical flow)

1t 10 s
1a (=1b) 2× 102 m
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FIG. 3. The outer solution for the long-channel Lagrangian velocityu= Xt at t = T = L(2U0)
−1, in the inner

domainL/4≤a≤ 3L/4, 0≤ b≤ L/2.

integrations in the channel sectionL/4≤a≤ 3L/4. Eight integrations will now be de-
scribed, with the following variations:

(i) either subcritical(U0< c), or supercritical(U0> c) mean flow;
(ii) either two dynamical boundary conditions (DBCs) forX andh, and a computational

boundary condition (CBC) forY, at botha= L/4 anda= 3L/4, or three DBCs at both
a= L/4 anda= 3L/4;

(iii) either “exact” numerical boundary data from the integration in the outer domain
provided ata= L/4 anda= 3L/4, or “corrupted” data. The data were corrupted as

X(a, b, tk) =
{

X(a, b, tk), 1≤ k ≤ 100

r k X(a, b, tk), 101≤ k ≤ 1000
, (5.6)

wheretk= k1t, T = t1000 andr = 0.99998. Note thatr 1000= 0.98 so the corruption is at
most 2%.

For brevity, results from only some combinations will be displayed.

(a: subcritical flow, 2 DBCs, 1 CBC, exact data) The outer solution is recovered: see
Fig. 4.

(b: subcritical flow, 3 DBCs, exact data) The outer solution is recovered: see Fig. 5.
(c: subcritical flow, 2 DBCs, 1 CBC, corrupted data) The outer solution is not recovered,

but the result is a smooth field: see Fig. 6.
(d: subcritical flow, 3 DBCs, corrupted data) The result is not a smooth field: see Fig. 7.

Integrating (d) beyondt = T leads quickly to complete breakdown of the solution, as does
integration fromt = 0 to t = T for r = 0.99997.

(e: supercritical flow, 2 DBCs, 1 CBC, corrupted data) The outer solution is not recov-
ered, but the result is a smooth field: see Fig. 8.
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FIG. 4. Experiment (a): subcritical flow, two dynamical boundary conditions (DBCs), one computational
boundary condition (CBC), exact boundary data from the outer solution. The outer solution is recovered.

(f: supercritical flow, 3 DBCs, corrupted data) The result is not a smooth field: see
Fig. 9. Again integrations for longer time or greater corruption lead to solution breakdown.

In summary, these simple experiments support the theoretical arguments of Section 3 that
h andX · n̂ may be specified on comoving boundaries, but not the tangential component of

FIG. 5. Experiment (b): subcritical flow, three DBCs, exact data. The outer solution is recovered.
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FIG. 6. Experiment (c): subcritical flow, two DBCs, one CBC, corrupted data. The inner solution differs from
the outer, but is smooth.

X in addition. It is also clear that, of course, were the boundary data obtained from perfect
observations of a real shallow-water flow (and filtered so as to be exactly consistent with a
numerical model) or obtained from another consistent numerical computation, then the third
or indeed even any number of dynamical boundary conditions could be prescribed. However,

FIG. 7. Experiment (d): subcritical flow, three DBCs, corrupted data. The inner solution is not smooth.
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FIG. 8. Experiment (e): supercritical flow, two DBCs, one CBC, corrupted data. The inner solution differs
from the outer (not shown), but is smooth.

the practical situation is that observations have significant errors and are inconsistently
filtered, while numerical data derive from coarser outer numerical approximations.

It remains to demonstrate the efficiency of radiation conditions at comoving boundaries.
Let h(1),X(1) be the solution of problem (a) above, that is, the inner solution subject to the

FIG. 9. Experiment (f): supercritical flow, three DBCs, corrupted data. The inner solution is not smooth.
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initial values (5.4) and to boundary conditions onh andX, the boundary valueshBC, XBC

being uncorrupted values of the outer solution. Recall thath(1),X(1) agree with the outer
solution. Leth(2),X(2) be the inner solution subject to the initial values (5.4) excepting that
hI is modified:

h(2)I (a, b) = hI (a, b)

×
{

1+ ε sin

[
π(a− L/4)

L/2

]
exp[−((a− L/2)2+ (b− L/4)2)(L/2)−2]

}
.

(5.7)

Thus h(2)I is modified by a bell-shaped “bump” of amplitudeε at (L/2, L/4), which is
tapered to vanish ata= L/4, 3L/4. Alsoh(2),X(2) are subject to the linear, inhomogeneous
radiation condition

Xt = XtBC ∓ gc−1(h− hBC) ata =
{

L/4

3L/4
(5.8)

plus the kinematic condition

X = XBC (5.9)

ata= L/4, 3L/4. That (5.8) and (5.9) together seem equivalent to the nonradiational con-
ditions (3.21) is resolved by noting that the flow perturbations

ξ ≡ X(2) − X(1), χ = h(2) − h(1) (5.10)

satisfy

ξt = ±gc−1χ (5.11)

at a boundary that has the total displacement (5.9). Long-channel sections of the perturbation
χ on the centerlineb= L/4 are plotted in Fig. 10 fort = 0, T/2, T, 2T.As expected, there is

FIG. 10. Long-channel sections of height differenceχ ≡ h(2)− h(1) at 0, T/2, T, 2T ; b= L/4, subcritical
flow, initial bump amplitudeε= 0.1. The disturbance smoothly exits the inner domain. Solid line:t = 0; dotted
line: t = T/2; dashed line:t = T ; dot-dashed line:t = 2T .
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no evidence of ill-posedness. The disturbance amplitude decays in time. That is,h(2)∼ h(1)

ast→∞. The bump in the free surface has exited the inner domain, and the outer solution
is recovered asymptotically.

6. SUMMARY

It has been argued theoretically, and by numerical demonstration, that the initial-boundary-
value problem for the primitive equations is well-posed in open comoving domains. In the
Lagrangian reference frame, all modes are effectively subcritical at the boundary (the lo-
cal Froude number vanishes identically) and so each mode requires the same number of
boundary conditions: one, such as surface elevation, to determine the incoming gravity-
wave radiation, with another, such as normal velocity, to determine the subsequent motion
of the boundary.

The horizontal Lagrangian reference frame depends upon depth, which dependence will in
general lead to distortion of initially rectilinear three-dimensional open domains. However,
this is a technical issue, as opposed to the fundamental issue of ill-posedness, and has
received little attention owing to a lack of motivation. The demonstration here of well-
posedness in comoving open domains provides that motivation.

The comoving domain is conveniently expressed in Lagrangian coordinates. Suppose
further that data, such as surface elevation or isopycnal depthh, have been collected by
freely drifting or Lagrangian buoys. Ifx=X(a, t) is the buoy trajectory, andhE = hE(x, t)
is the Eulerian field of elevation, then the data are of the form

d(t) = hE(X(a, t), t), (6.1)

wherea is the initial position of the buoy. Now (6.1) is a nonlinear measurement, which
would greatly complicate least-squares variational data assimilation. The tangent lineariza-
tion of (6.1) is readily derived, but its impact on any iterative search algorithm may well be
complex. If, on the other hand,hL = hL(a, t) is the Lagrangian field of elevation, then the
data are of the form

d(t) = hL(a, t), (6.2)

which is a linear measurement, and so ideally suited to least-squares variational assimi-
lation. (Data from moored or Eulerian buoys would correspond, of course, to nonlinear
measurements in Lagrangian coordinates.)

Comoving domains and Lagrangian coordinates evidently offer significant advantages for
regional modeling. Finally it may be noted that, as the cost of fixed moorings are becoming
prohibitive, surface drifters and subsurface floats are increasingly the observing platforms
of choice.
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